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A self-similar solution of the problem of the uniform heating of an elastic cone of transversally
isotropic material with curvilinear cylindrical anisotropy is obtained in a cylindrical system of
coordinates. It is assumed that the cone has a small vertex angle. A solution of the problem of the
deformation of the cone in question due to the action of an axial force is given. A feature of the
problems is the fact that the axes of physical and geometrical symmetry do not coincide.

A solution of the problem of the deformation of a cone of transversally isotropic material due to the
action of an axial force was derived in [1, 2]. The case when the axes of physical and geometrical symmetry
of the body are collinear was considered in [1], and the case of a material with spherical anisotropy, when
the axis of symmetry of the material is directed along a spherical radius, was considered in [2].

1. A CONE OF TRANSVERSALLY ISOTROPIC MATERIAL ACTED UPON BY
A UNIFORMLY DISTRIBUTED TEMPERATURE

We will consider the self-similar solution of the equations of the theory of elasticity in a cylindrical
system of coordinates r, 8,x as it applies to the problem of the uniform heating of an elastic cone of
transversally isotropic material with curvilinear cylindrical anisotropy. A feature of the problem is the fact
that the plane of isotropy of the material is not perpendicuiar to the axis of the cone. We will assume that
the cone has a small angle at the vertex, i.e. tgp<1, where 2¢ is the vertex angle of the cone.

The origin of coordinates is placed at the vertex of the cone, and the x axis is directed along the axis of
the cone. The ends of the cone are described by the equations x=x,20, x= X > x,.

Henceforth we will give the directions r, ¢ and x the subscripts 1, 2 and 3.

The stresses G,, ©,, Oy, O, and the strains €,, €,, €, €, in the material considered are related by
the following equations {1]

Ezel = kO‘l - k\"(oz + 63)+ EgalAT
8282 =0y —V0; -kv’c, + EzQzAT (1 _1)
En€y =03 -V0;y ~kv'G| + E;09AT

Eye3 =703, k=E,/E, Y=E, /G
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The axis of symmetry of the transversally isotropic material is directed along axis 1, E, and E, are the
moduli of elasticity in directions 1 and 2, respectively, G is the shear modulus, o, and o, are the
coefficients of thermal expansion along axes 1 and 2, and AT = const is the temperature of the cone.

The case then k > 1 is of interest.

We will seek a solution of the problem in the form

o, =0;(y), € =¢;(y), i=1,2,3
(12)
013 =013(y), €3=€;3(y), y=x/r

The equations of equilibrium and compatibility of the strains for the case of axisymmetrical deform-
ation in a cylindrical system of coordinates when conditions (1.2) are satisfied can be written in the form

-G{y+0{3+0; -0y =0, ~O13y+0;3+03=0 (1.3)
—€5y+¢&, -8 =0, €5 =¢€[;+&%y 14)

where the prime denotes differentiation with respect to y.
There are no surface loads on the side surface of the cone y=y, =ctgp. In this case the boundary
conditions on the side surface can be written as follows [1]:

o, (y)n =013 ), S13(yIn =03(n) 1.5)
The condition for the resultant force acting on the ends x=x,, x=.X to be zero has the form

xtge
Gayrdr=0 (1.6)
0

We will seek a solution that is bounded as y — e (r —0). Then, when the second equations of (1.3)
and (1.5) are satisfied, condition (1.6) is satisfied automatically.
We will convert the second equation of the compatibility of the strains into the relation

esy=—€fy” -€i3 17)

Taking into account the fact that the angle ¢ is small, the solution of Egs (1.1), (1.3) and (1.7) and the
first equation of (1.4) can be written in the form of series [3]

6; =Dy "' 3a; y ™ + B /[(1- v )@? - 1)), =123

013 =Dy *Lagmy™"
By =B, =—[P+(v-kv')Dy), By =Dy(k-1)-(vV+kv')P
P = Ey(0; ~02)AT, @=[(k-(kv)?)/(1-v? )1
Mo=1 ayp=0®, 830=VR+kV’, a40=a3g(@-1)/(0+])
where D, and D, are undetermined constants, and the summation here and henceforth is carried out with
respect to m from 0 to oo,
Note that for a material with a pronounced anisotropy we can assume that & >1when k>1.

A method of finding @ and a,, (i=1, ..., 4) will be described below.
The coefficients a,,, (j=1, ...,4; m=1) are defined by the following recurrent relations

(0+2m)ay py — 8y =(O+2m=2)a4 p_)

(0+2m)(~kv'ay , + a2 — Vo3 ; )~ kay g + kv'(ay pm +a3 m )=0



The deformation of a cone of transversally isotropic material 179

(@+2m—-1)(-kv'ay py ~Vay py + 83 ) =
=—(0+2m-3)k{a) -1 — V' (@2 m-1 + 33 m-1 )} - (@ +2m—-2)Ya4 py_)
(@+2m+1)ag , =(@+2m~1)as

If we retain only the first terms a,, in the series Za,,y™", we obtain an asymptotic solution of the
problem. It satisfies the second relation of (1.3), the first equation of (1.4) and the equations

-G1y+0, -0y =0, E;&3=D;+E;0,AT

which are asymptotic approximations as 1<w<2 of the first equation of (1.3) and relation (1.7),
respectively.

This system of equations can easily be integrated, and as a result one can determine the coefficients a,,
(i=1, ..., 4) apart from a constant factor D,, and the quantity .

The constants D, and D, can be found from the boundary conditions (1.5).

A singularity of the solution obtained is described by the factor in front of the series summation sign.
In particular, by writing the solution of the problem in the natural variable =y we obtain that at the
point £=0 when 1< <2 the derivatives do,/d (i=1, 2, 3) tend to infinity.

2. A CONE ACTED UPONBY AN AXIAL FORCE

We will investigate the stress state of an elastic cone (tg¢ <1) of transversally isotropic material acted
upon by oppositely directed axial forces Q applied at the ends x=x,=0, x= X > x,.

The relation between the stresses and the strains is given by relations (1.1). As in Section 1 we will
consider the case when k>1 (w>1).

We will write the solution of the problem in the form

o =x2p;(y), & =x"2e;(y), i=1,23
" N (2.1)
O13=x""p1a(y), e3=x""e3(y), y=x/r

We will write the equations of equilibrium and compatibility of the strains, taking (2.1) into account, as
follows:
~Piy+Pi-Py+(P1y?)y? =0
-P{3y+P13-2p3y” +p3 =0 22)

—ejy+ey—e =0

Y ey 2) = (e3y Yy + ey (23)

The boundary conditions on the side surface of the cone are given by relations (1.5).
Axial forces Q with opposite signs act on the ends of the cone x=x,, x=X

ct;
2n rogr dr=Q

0

Using (2.1) we will write the last condition in the form
ot
2% _fgpé,y'3 dy=-Q (24)

The second equation of equilibrium (2.2) and the second boundary condition (1.5) are satisfied
identically if we put



180 1. V. Panferov

o} = yo‘3 (25)

We convert the second equation of compatibility (2.3) into the relation

iy 3(ey+e) -3y ) =¢5 (2.6)

Taking into account the small geometrical parameter of the cone tgp <1 we will seek a solution of the
first equations of (2.2) and (2.3) and of Eqs (2.5) and (2.6) in the form of series

Pi=Dy %4,y 2" + Dy 3 by ", i=1,2,3
P13 =Dy "L agny " +Dyy " by py "

where D, and D, are constants.
The asymptotic solution

pi =Dy a0+ Dybig, pr3=Diy ®ago+Dyy " bp
is found from the first equation of (2.3), relation (2.5) and the equations
—piy+p1—p2=0, Eye3=D,

The last two relations are asymptotic approximations as y —» e of the first equation of (2.2) and of Eq.
(2.6), respectively.

Integrating this system of equations we obtain

a, 0=l a30=0, a30=VO+RV', a40=a39

by g =by g = YV bro =beo = k-1
WP T T V@ -1 0 M T v o)

o =[(k-(v)}) 1 (1-v?)2

The coefficients a,,(m=1) are defined in recurrent form in terms of the coefficients a,,,, (i=1,...,4)
Similarly, b,,(m>1) are calculated in terms of the quantities 5, , (i=1,...,4).

In order to obtain these recurrent relations we must substitute the solution p(y) (=1, 2, 3), ps(»)
calculated above into (2.2), (2.6) and the first equation of (2.3).

3. RESULTS OF CALCULATIONS

Calculations were carried out for k=3, v=02, kv'=03, y=6, tg ¢=0.25 and different values of L
(the number of the term at which the sums of the series were terminated).

In columns 2-5 of Table 1 we show the values of the dimensionless temperature stresses of =o,/1 P|
(i=1, 2, 3), 6% =0,/1P! at the points E=0, 0.5 tgo, tg@§=y") for the case when o,>0,, AT =
const <0.

Note that when L =5 the results are practically identical.

The stresses decrease monotonically along the § coordinate.

Table 1 also shows the values of the self-similar functions p*= p,x28/Q (i=1, 2,3), p}=p,; X27/Q.

The results of calculations of these functions are practically identical for L=11.

The functions p, and p, decrease monotonically along the £ coordinate; the function p, attains a
minimum value at the point & =~0.5.
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Table 1
Eng o o o o  10°x0j; pi 3 p3 Pia
0 05114 05114 02276 0 2.045 2045 4090 0
0.5 02032 -00243 00340 -0632 1154  -0265 3543 4428
1 00044 03821 00700 1748 1599  -0750 2558 6.394
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